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This study contributes to the theory of amplitude vacillation for finite amplitude 
baroclinic waves in a two-layer, quasi-geostrophic, zonal flow as worked out by 
Pedlosky. In a recent paper the author has shown that Pedlosky omitted a 
certain side-wall boundary condition on the mean zonal flow. The neglect of this 
boundary condition results in an unspecified energy source at the side-wall 
boundaries and the physical problem is incorrectly posed. 

In  this paper, Pedlosky’s analysis is repeated but with the side-wall boundary 
condition included. It is shown that the side-wall energy source is negligible only 
when the zonal wavenumber of the disturbance is large compared with the 
meridional wavenumber, and not otherwise. Moreover, the energy conversions 
to and from mean zonal kinetic energy corresponding to Pedlosky’s calculations 
and those given here have essential differences, although for fixed meridional 
wavenumber, these differences become less pronounced as the zonal wavenumber 
increases. 

It is also shown that, when the side-wall condition is included, the mean flow 
distortion associated with the wave is different in structure to that which occurs 
when the condition is omitted. However, as the total disturbance wavenumber a 
increases, the influence of the side wall on the mean flow structure is confined to 
a boundary layer of width comparable with the internal deformation radius 24a-l. 

Even when the deformation radius is comparable with the channel width, the 
conclusions of Pedlosky (1972) concerning the existence of stable periodic 
solutions are correct, providing viscous effects are vanishingly small, and the 
criteria for stability of the steady solutions obtained herein are not significantly 
different from those given by Pedlosky. In  this viscous regime, we have also 
studied the evolution t o  limit-cycle solutions. 

Evolution in the case where viscous effects are small on the time scale for the 
initial growth of an incipient wave, but not vanishingly small, will be discussed 
in a subsequent paper. 

1. Introduction 
Inarecentseriesof papers, Pedlosky(l970,1971,1972, henceforthreferred toas 

P70, P71, P72) develops an analytic theory for the evolution to finite amplitude 
of marginally unstable baroclinic waves in a two-layer, quasi-geostrophic flow 
model and shows that different types of behaviour are possible according to the 
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level of dissipation in the model. Thus P70 shows that, in the absence of frictional 
effects, the wave amplitude oscillates dnoidally as energy is extracted from and 
subsequently returned to the mean flow during an oscillation cycle. On the other 
hand, with dissipation present, a steady wave solution is possible in which the 
rate of energy transfer from the mean flow to the wave is exactly balanced by 
dissipation of wave energy. Moreover, if dissipative effects are significant on the 
time scale defined by the linear growth rate of the incipient wave, evolution to 
this steady solution always occurs. However, if dissipative effects are sufficiently 
small over this time scale, the steady wave solution is unstable for waves shorter 
than a certain wavelength, and according to P71, long-period pulsations in the 
wave amplitude evolve and are described by a stable limit-cycle solution of the 
wave amplitude equations. P72 gives analytic solutions for the limit cycles in 
the case of vanishingly small (but non-zero) dissipation and shows that solutions 
of this type are still possible even if the steady wave solution is stable, in which 
case an unstable limit cycle also exists. This presumably defines the range of 
attraction, in some sense, of the stable limit cycle and the steady solution. 

In contrast to the inviscid dnoidal solution of P70, the limit-cycle solutions are 
independent of initial conditions and are therefore of interest as they may lead 
to an explanation for the occurrence of amplitude vacillation such as that 
observed in experiments with differentially heated rotating fluid annuli (see, 
for example, Pfeffer & Chiang 1967; Fowlis & Pfeffer 1969; Hide 1969) and in 
related experiments on mechanically driven baroclinic waves (Hart 1972, 1973), 
for certain values of the governing parameters. However, in a study of the energy 
conversion associated with Pedlosky's solutions for small dissipation, it is shown 
by the aubhor (Smith 1974) that the omission of a certain boundary condition at 
the side boundaries of the flow results in an implicit, non-physical source of mean 
flow kinetic energy, the strength of which depends on the calculated amplitude 
of the wave. 

In  the present paper, the analysis of P72 is repeated with the side boundary 
conditions included and the uncertainty concerning the existence of limit cycles 
is resolved. Indeed, i t  is shown that the conclusions of P72 are broadly correct 
although there are major differences in detail between the two analyses. In  
general, the side-wall energy source in Pedlosky's calculations is not negligible 
compared with the internal conversion of mean energy to wave energy. More- 
over, in the analysis of P72, the side-wall source is the primary one for maintain- 
ing the total energy level of the flow against the dissipation of wave energy. 

The question as to whether or not an incipient wave evolves to a limit-cycle 
state is also studied here; this question was not addressed in P72. 

Finally, we investigate the stability of the steady wave solution in the case of 
small, but not vanishingly small, dissipation. Some numerical integrations of 
the amplitude equations will be discussed in a second paper. 
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2. Reduction of the amplitude equations 
In P71, a pair of coupled equations [cf. (4.9) and (4.10)] is derived for the 

growth of the wave amplitude A(T) of a marginally unstable baroclinic wave 
and the distortion it produces in the original zonal mean flow, represented by its 
contribution CDjz)(y, T) to the total stream function, viz. 

d2A 3 r dA A k2(Ul -U)2  
-+----- , A  
dT2 2lAlfdT lAl 4a2 

The notation is identical to that of P71. The domain of the equations is 0 6 y ,< 1 
and T 2 Oand the solution is completelydeterminedwhen A,  dAldTand CDi2)(y, T) 
are specified a t  the initial instant T = 0 and the boundary conditions CD& = 0 
at y = 0 and y = 1 are satisfied for T 2 0. In the analyses of P71 and P72, the latter 
conditions are omitted and are tacitly replaced with the conditions CDj2) = 0 at y = 0 
and y = 1 by the choice 

as theform of the solution to (2.2). 

@I2) = B(T) sin 2mny (2.3) 

At this stage we note that (2.1) and (2.2) have the steady solutions 

] (2.4) 
IAl = A, = (U, - U,)/amn, 

@I$) = (U, - U,) V,( y )  = (U, - U,) (1 - cos 2mny)/2m2nr2, 

where for definiteness the boundary conditions CDj$’ = 0 a t  y = 0 and y = 1 have 
been applied. This is equivalent to assuming that the wave grows from an 
incipient level and that there is no initial distortion of the mean flow, i.e. 
@.$)(y, 0) 3 0. In  this case, the above conditions follow immediately from the 
side-wall conditions CD& = 0 at y = 0 aiid y = 1. 

The corresponding steady solution in Pedlosky’s theory differs from (2.4) only 
by the absence of the constant term in the expression for @$. 

Before solving (2.1) and (2.2),  it  is convenient to rescale them by taking 
A = A,B, @I2) = (Ul- U,) CD, T = 2 a ~ / k ( U ~ -  US) and r = Zar/k(U,- U,) \A\*, 
where T is the rescaled time variable and (T is the resealed viscous parameter. 
We also define V = CD, and use this as a dependent variable instead of @ to 
circumvent the subsequent need to differentiate a Fourier series. Further, we 
assume henceforth that A > 0 and, following P71, that A is real. Then (2.1) and 
the y derivative of ( 2 . 2 )  take the forms 
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where the last term in (2.5) results from an integration by parts. When combined 
with the conditions V(y, 0) = 0, V(0, T )  = 0 and V(  1, r )  = 0, this pair of equations 
is completely specified by prescribing initial values of A and dA/dr. 

In  view of the expansion 

4 *  2n- 1 
nnS1 (2n- 1)2-4m2 

cos2mn-y = - C sin (2n- 1) ny, 0 -= y < 1, 

we seek a solution of (2.6) in the series form 

00 

V(y, T )  = K(7) sin (2n - 1) ny 
n= 1 

which satisfies the boundary conditions at y = 0 and y = 1 and the initial 
condition V(y, 0) = 0, provided that K(0) = 0 for each n. Then multiplication 
of (2.6) by sin (2n- 1)ny and integration with respect to y from y = 0 to y = 1, 
using the boundary conditions on V ,  yields an ordinary differential equation for 

V~(T) = 2jO1 V(yy7)sin(2n- 1)nydy. 

Finally, with X,(7) = $n3(2n - 1) [4m2 - (2n - 1)2] X(r ) ,  the set of equations for 
the V,, together with (2.5), reduces to the infinite autonomous system 

_ -  - BY 
dA 
a7 (2.8a) 

(2.86) 

dX, = q,[iiB + f l ( 3  - X,)] (n = 1,2, . . .), (2 .8~)  
dr 

where cm, = [(2n - - 4m2]-2 (2.9) 

and q, = (2n- 1)27r2/[(2n- l)27r2+u2]. (2.10) 

These equations have steady solutions A = ~f: 1, B = 0, X, = 1 (n = 1,2, ...), 
corresponding to (2.4); to see this note that 

m 

C c,, = n2/64m2, 
n=l 

as shown in appendix A. Solutions which evolve with time may be obtained 
approximately by numerical integration. 

At this stage it is apparent that the structure of the distorted mean zonal flow 
is, in general, quite different when the side-wall condition is included in the 
analysis; compare the formsfor a@i2)/ayobtainedfrom (2.3) and(2.7),forexample. 
Thus, in Pedlosky’s analysis maximum distortion occurs at  the side walls and 
for m = 1 there is none in mid-channel, whereas in the present theory there is no 
distortion at the side walls and a maximum in mid-channel, irrespective of the 
value of m. The differences may be seen most clearly in the case where v 1; 
then the solution is quasi-periodic and has the same spatial structure as the 
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solution when cr E 0 (see $55.1 and 5.2). In  the latter case, equation (4.11) of 
P71 gives 

(2.11) 

and it can be shown that (2.7) leads to  this structure also. Clearly a$;) = 0 a t  
y = 0 , l  and the side-wall boundary condition is satisfied. Moreover, the structure 
of (2.11) differs from that given in P72 (see the @$;)obtained from (2.3) above) 
by the term cosh a(y - i)/cosh *a, which is unity at y = 0 , l  but decays exponen- 
tially away from each side wall with decay scale a-l, or 2-?t times the internal 
radius of deformation. Hence for large m, and hence a, the effect of the side wall 
is experienced only in these side-wall layers. 

a$;) cc COB 2mn-y - cosh a(y - $)/cash $a 

3. Energy considerations 
A comparison of the energy conversions in P71, P72 and the present theory 

shows considerable differences and the claim by Pedlosky (1975) that, in the 
parameter region of interest, the effect of the side-wall boundary term in his 
theory is energetically unimportant compared with the internal conversions is 
not wholly correct. According to the lowest-order energy analysis (see Smith 
1974, figure 1), the ratio of side-wall energy input, say {SW, g},  to internal poten- 
tial energy conversion, {F, P’}, is 

-mn-(U’- ~ ) d B / d ~  -e- ~ ~ ~ ( d j A [ ~ / t Z T + 2 r j A j ~ / l A j t ) .  

In  the case 0 < .//A13 < 1, studied in detail in P71, this ratio reduces to 
4m2;rr2/(4rn2n2+a2), using equations (6.1) and (4.9) in P71. Form = 1, limit cycles 
exist for values of a slightly less than 2n- (see $5) and the side-wall energy conver- 
sion rate is only half the internal conversion rate in this case. However, 
when a 9 3mn-, corresponding t o  very short waves (horizontal wavenumber 
k 9 3~mn-), the side-wall energy source is negligible compared with the internal 
conversion rate. 

The ratio of side-wall energy input to the energy input {HB,B} from the 
horizontal boundaries is lAl*dB/dT -e- rB(T) and for r/lAl3 - 1 this is typically 
of order unity unless the wave is steady. Furthermore, to order \A\# ,  the rate of 
change d B / d T  of mean zonal kinetic energy is identically zero in Pedlosky’s 
theory (Smith 1974, p. 2011). Hence the reservoir of this form of energy is 
unavailable for conversion to wave energy and could be regarded as a ‘catalyst’ 
for the conversion of side-wall energy, and that produced by the differential 
motion of the horizontal boundaries, into mean available potential energy and 
thence to wave energy, or vice versa. In  the case cr = 0, {HB,E} = 0 and the 
conversion of mean zonal kinetic energy into mean available potential energy 
{X,p}, or vice versa, is associated entirely with a side-wall energy flux; i.e. 
{S W ,  R} = {K, P}. Hence the energy conversions corresponding to the solution 
given in P72 as cr+ 0 are not the same as those of the inviscid solution given in 
P70; in the latter, the side-wall energy transfer is zero and fluctuations in {x, 
are associated with fluctuations in B. 

A similar situation emerges when cr < 1 but in this case there is an additional, 
but relatively small, replenishment of mean zonal kinet,ic energy, proportional 

_ _  
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to CT, from the horizontal boundaries. This maintains the total energy of the 
system against the slight viscous dissipation of wave energy. [N.B. If LT 4 1, 
r/(Al* 4 I and from equation (6 .2 )  in P71, B(T)  N IAI2 N 1. Hence from (3.1) 
above, {HB, h'}/{S W ,  E}  < I .] 

In  contrast to these results, in the present theory {SW, E} is identically zero 
but d E / d T  does not vanish identically to order la(*. Thus, in the case LT = 0, 
{HB,E} = 0 and there is no dissipation of wave energy. Hence total energy 
(mean energy plus wave energy) is conserved and in particular, {K ,  P} conver- 
sions are associated with changes in the level of K, consistent with the energetics 
of the inviscid solution given in P70. For LT 4 I ,  {HB,  Z} is non-zero but is again 
small compared with dh ' /dT  and {K,P} ,  and serves to maintain the system 
against the slight dissipation of wave energy. 

_ _  

_ _  

4. Steady solutions and their stability 

and F' is most readily investigated by setting 
The local stability of the steady solutions (2 .4 )  to small perturbations of 2 

d = 5 I +ctOeh7 and V = Jc(y) +v,(y) elT 

in (2 .5 )  and (2 .6 )  and seeking possible eigenvalues h for which the linearized 
system of equations for a,, and vo(y) has a solution, subject to the boundary 
conditions vo(y) = 0 at y = 0 and y = 1.  With h = 72/(1 - T ~ ) ,  the problem 
reduces to finding the complex roots of the transcendental equation? 

c2 ~ ~ ( 3 - v 2 )  (4m27r2+a2)2 P(7) = 4m2n2 + a272 - 4a7 tanh &a7 + - = 0. (4.1) 
4m2n2 ( 2  - r2) (I - 72)2 

Instability is assured if at  least one eigenvalue h has a positive real part. If 
7 = qr + iri, it is easy to show that roots of (4 .  1) giving values of h with Re h > 0 
lie in the small region X of the $, 7: plane bounded by the line 7: = 0 (0 6 7: < 1) 
and the parabola 7: - 7: - (7: + 7!)2 = 0. The possibility of such roots is easily 
determined by plotting contours of Re (P(7) )  = 0 and Im (P(7))  = 0 for values 
of 7 corresponding to points ($, 7:) in X (note that if 7 = qr + iqi is a root of (4.1) 
then so also are the points iqi) and their values are readily obtained using 
Newton's method. 

The regions of parameter space (i.e. the LT, a plane) in which the steady wave 
solution is stable or unstable are shown in figure 1 for the lower values of the 
transverse wavenumber m .  It may be seen that for a given value of LT the longer 
waves are stable (smaller total wavenumber a) and the shorter ones unstable 
with the range of stable wavenumbers decreasing to a certain finite range (de- 
pending on m) as LT tends to zero. 

Atmostoneroot of (4.1) liesinXand as ~ ~ + O t h i s  roottendstounity.For LT 4 1, 
it may be located by expanding 7 = 1 + i y a  - y26a2 + O(a3), where y and 6 are 
real order-one functions of a and m which are obtained by equating powers of LT. 

With a little algebra, one can show that, as LT+ 0, sgn (Reh) = sgn (28- 3) and 

7,. 

t Some details are given in appendix B. 
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a h  

FIGUFCE 1. Stability diagram for the steady solutions to (2.8) showing the neutral curves 
for m = 1, 2 and 3. The unstable region for given m is on the right of the neutral curve 
for that m. 

hence instability is assured if 6(a, m) > 1.5. The details are not given as the value 
of a which separates the stable and unstable regimes for given m as cr -+ 0 is more 
easily obtained by a direct linear stability analysis of (2.8).? As outlined in 
appendix B, it may be shown that this value of a satisfies the equation 
#(a ,  m) = 0-5, where the function # (a positive and monotone decreasing function 
of a with $(0,m) 3 1) is defined in 54.2. 

In  P71, the stability analysis of (essentially) (2.1) and (2.2), with the side-wall 
conditions CD = 0 at y = 0 and y = 1, was performed only for small c and insta- 
bility was assured for a2 > 4m27r2, compared with a2 > 3.82m27r2 in the present 
theory. The closeness of these results is due presumably to the fact that the 
constant term in the expression for V,(y), which is the only difference between the 
steady solution in Pedlosky’s analysis and the one here (see 52), does not con- 
tribute to the stability analysis. Moreover, the side-wall energy source is negli- 
gible compared with the input from the moving horizontal boundaries in the 
neighbourhood of the steady solution; see 5 3. 

I n  the following sections, we investigate the evolution of an incipient wave to 
finite amplitude in cases when the steady wave is either stable or unstable. 

-t Pedlosky (private communication) has also done this calculation and our results agree. 
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5. Solutions of the amplitude equations 
5.1. Inviscid solutions, cr = 0 

Inthiscase, ( 2 . 8 ~ )  canbeintegratedtogiveX,(r) = t q n ( A 2 - A ( 0 ) 2 ) ( n  = 1,2 ,  ...); 
henceforth we omit the tilda on A. Equations (2.8a, b) may then be reduced to 
a single equation for A(r): 

d2A/dT2 = Nl A - NA3, (5.1) 

where 

P70 shows that (5.1) has a solution in terms of the Jacobian elliptic function dn, 
which describes the evolution of an incipient wave. The equation itself also has 
periodic solutions in terms of the elliptic function cn. Note that, in either case, 
the coefficient Nl depends on the initial value of A through (5.3). 

5.2. Slightly viscous case, 0 < cr < 1 

We begin by rewriting (2.8) in the form 

and d ( X n  - $qn A2)/dT = gqn(A2 - Xn) .  (5.5) 

I n  view of the solutions for u = 0, we may expect that solutions of (5.4) and 
(5.5) for cr < 1 will be almost periodic, indeed almost cnoidal or dnoidal, with the 
amplitude and period of the oscillation changing imperceptibly on the time scale 7 
but significantly on the extra sbow time scale 8 = r7.t These considerations 
suggest the use of a multiple-scaling method and as in P72 we adopt the method 
developed by Kuzmak (1959) and discussed by Cole (1968). The procedure re- 
quires the introduction of a new fast  time variable t such that dt/dr = f(@, where 
f(0) is an order-one function to be chosen later. The dependent variables are 
subsequently regarded as functions of both t and 8, which are taken to be 
independent. Then with 

and 

(5.4) and (5.5) become 

t Note that since (2.1) and ( 2 4 ,  and hence (2.8), result from an expansion of the 
geostrophic stream function in powers of 1A1) [see P71, equation (5.6)], their sub- 
sequent analysis in the small-cr limit, by introducing a further expansion in cr, assumes 
that u is formally larger than IAI, but smaller than lA14. 
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where f’ = df/d8. A solution of these equations is then sought as a power series 
in a. i.e. we set 

in (5.6) and (5.7) and equate coefficients of powers of a to zero. 
To zeroth order in a, we obtain 

and 
and to first order in a, 

(5.9) 

(5.10) 

= - [Vjs+f’+$f] a (2) (5.11) 

and fa(xm,-qnAoAJ/at = qn(A;-Xno) - a(xn,-hmAi)/a8* (5.12) 

Equation (5.10) may be integrated immediately to give 

XnO-gqnA; = A,(8), (5.13) 

where the An(@ (n = 1,2, . . .) are as yet undetermined functions of integration. 
Elimination of Xno between (5.9) and (5.13) yields 

f a2Ao/at2 - Nl(8) A ,  + NA: = 0, (5.14) 

where (5.15) 

Equation (5.14) is identical in form to the equation (5.1) for the inviscid problem 
but the coefficient N,(8) is a function of the slow time as given by (5.15). 

Multiplication of (5.14) by aAo/at permits a first integration of this equation, 
giving 

ij2(aAO/at)2- +N,(B) A; + ~ N A :  = s(e), (5.16) 

where s(8) is a constant of integration on the t scale. This equation for the 
zeroth-order amplitude has periodic solutions in terms of Jacobian elliptic 
functions as follows. If &(8) < 0, 

A&, 8)  = 4 8 )  dn ((40) t ,  K(@), (5.17) 

where the frequency of oscillation w ( 0 )  = (&N,)$u/f, the amplitude a(8) and the 
modulus ~ ( 8 )  are related to E(8) and N,(B) by the  formulae 
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Since in the parameter range we are considering viscous effects are manifest 
only on the time scale CT-1, the inviscid solution is appropriate when 0 = 0 and, 
as shown in P70, an initially incipient wave corresponds to b(O) slightly less than 
zero. Then as in $5.1 we have A,(O) = -$qna(0)2 and Nl(0) = 1 +Na(0)2  and 
without loss of generality we can takef(0) = 1. 

To complete the zeroth-order solution we must determine the long-term drift 
in the functions a(@), K ( 0 ) ,  A,(@, etc., as viscous effects are progressively felt 
on the longer time scale. In  particular, we seek to answer the following question: 
is an exactly periodic solution of the zeroth-order equation in which a, K ,  A, etc. 
are stationary (i.e. da/d0 = 0, etc. ...) possible? For CT 4 1, this type of solution 
would correspond to  a limit-cycle solution of (2.8). If such a solution is possible, 
we wish to know also if it is stable with respect to  small perturbations in a, K ,  An, 
etc., and if so, under what circumstances an incipient wave evolves to exhibit this 
type of behaviour . 

As is common in multiple-scaling methods, equations governing changes in 
the parameters ( e g .  a(@, ~ ( 0 )  and A,(@)) of the zeroth-order solution are obtained 
as conditions which suppress secular terms occurring in the first-order solution. 
I n  the present problem, it is necessary to construct solutions of (5.11) and (5.12) 
for A,(t, 0) and X,,(t, 0) which are periodic in t with the same period 0, as A ,  
and Xon such that 0, is independent of 0 (it is to  facilitate this choice for 0, that 
it is necessary to introduce the functionf(0): for details, see Cole 1968). The 
procedure is as follows. 

For any quantity c(t, O), let 

(0 = L j e p c d t .  0, 0 

It follows that for any periodic quantity ( with period 0, 

(d$/dt} = 0. (5.21) 

This result applied to (5.12) with X,, eliminated using (4.13) gives 

dAnlde+q,Rn = qn(1-4qn) ( A t ) .  (5.22) 

After a moderate amount of manipulation, the details of which are relegated to 
appendix C, we deduce a further equation relating da(B)/d0 and dK(0)/d0 from 
(5.11), namely 

where 

+ $ ) ( ( ~ ) 2 ) + ( N 2 - N ) ( ( A Q - ( A g ) 2 )  = 0, (5.23) 

16m2 
N2 = - C cmn 

7 9  .n=l 
(5.24) 

A final equation relating a(@, K ( 0 )  and A,(@) is obtained from (5.15) and either 
(5.18~) or (5 .20~) .  This becomes 

if ( 5 . 2 5 ~ )  

(5.253) 
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Finally, since t a n d ~ a r e  only related differentially, we may choose 0, E 1 without 
loss of generality, implying that 

{ N c x . ~ / ~ ~ K ~ K ( K ) ~  if g(O\ > 0, (5.26 a) 
f 2  = I N E ~ / S K ( K ) ~  if 8(0) < 0,: (5.26b) 

where K ( K )  is the complete elliptic integral of the first kind; see, for example, 
Byrd & Friedman (1971, henceforth referred to as EF). 

In  the case a(0) > 0, (5 .22) ,  (5.23), t’he 6’ derivative of (5.25a) and the 
logarithmic derivative of (5.26a), which givesJ’/f in (5.23), lead to the following 
system of equations for a(O), K ( 0 )  and A,(@: 

(5.27a) 

(5.273) 

where 

dA,/do+q,A, = q, ( l -$q , )b(a ,~)  (n = 1,2, ...), ( 5 . 2 7 ~ )  

a l ( ~ )  = 3 [ ( 2 ~ ~ - l ) ( c n ~ ) - ~ ~ ( c n ~ ) + 1 - ~ ~ ] ,  

a , ( ~ )  = $ [ ( K ’ / K - K - ~ ) ~ ~ ( K )  i. a ; ( ~ ) ] ,  

a&, 4) = &,(K) + K,($ - 2) ((en3 - (en2),), 
a4(a,K) = ~ ( Z - K - ~ ) ,  a5(a,K) = a , ~ - ~ ,  

b(a, K )  = a2(cn2), 4 = $(a, m) = 2N2/N 
and 

(cn2) = ( E ( K ) / K ( K )  - 1 + K,) K-, (using EF, p. 193, 0 312.02), 

(en4) = i[(2-3K2)(1 - K 2 ) f 2 ( 2 K 2 -  l ) E ( K ) / K ( K ) ]  KW4 (usingEF,p. 193,§312.04), 

where E ( K )  is the complete elliptic integral of the second kind (EF, p. 10, 
3 110.07). Here a prime denotes differentiation with respect to K. 

In  the case a(@ < 0, (5 .27~-c)  have the same form although the coefficients 
are different, namely 

al(#) = 3[(2 - K,) (dn2) - (dn4) + K, - I], 
a&) = g[a l (K)  K ’ ( K ) / K ( K )  +a;(K)I, 

a 3 k  4) = h ( K )  + (4 - 2 )  ((dn4) - (dn2),), 
a4(a, K )  = 2a(l-  &K,), a5(a, K )  = - a 2 ~ ,  
b(a,  K )  = a2(dn2), 

where (dn2) = E ( K ) / K ( K )  (using EF, p. 194, §314.02), 

(dn4) = @ ( 2  - K,) E(K) /K(K)  - 1 + K2] (using EF, p. 194, $314.04). 

The system of equations (5.27) may be integrated numerically using a straight- 
forward Runge-Kutta method if we are prepared to truncate the series occurring 
in (5.276). Since c, - (2r- 1)4 for large r,  the series is rapidly convergent,:and 
in the calculations presented here, fifteen terms were taken and found to give 
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good accuracy. In  these calculations, the values of E(K)  and K ( K )  were evaluated 
at each stage of the integration, using standard routines. The solutions are 
discussed in $5.5. 

5.3. Periodic (limit-cycle) solutions 
As explained earlier, a limit-cycle solution of (2.8) corresponds, in the slightly 
viscous case, to a steady solution of (5.27). A necessary condition for such a 

FIGURE 2. (a) Variation of the function &a, m) for selected values of m. ( b )  Variation of 
the functions II,(K) and II,(K): since the asymptotics of K ( K )  as K -+ 1 involve log (1 - K ~ ) * ,  

the asymptotic values II,(l) = 1.25, II,(l) = 1.25 are approached exceedingly slowly as 
K + 1. The diagram on the right-hand side depicts the approach of the II functions to their 
asymptotes, the abscissa having a logarithmic scale in K* = 1 - K.  
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aln 
1.0 
1.5 
1.7 
1.9 
1.95 
2.0 
2-5 
3.0 
5.0 

b >  0 - 
K S  

0.99445 
0.99072 
0.98957 
0.98852 
0.98826 
0.98801 
0.98559 
0.98329 
0-97619 

a* 
1.71620 
1-72899 
1.73287 
1.73668 
1.73622 
1.73669 
1.73856 
1,73698 
1.72433 

c <  0 
r 1 

Kt3 cc, 
0.97665 1.56315 
0.90425 1.3’7873 
0,83744 1-28272 
0.64494 1- 13 184 
0.38149 1.039 16 

Solutions 
not possible 

TABLE 1. Values of K, and a, in limit-cycle solutions for rn = 1 
and selected values of a (in multiples of n). 

solution is that there exists a value of K ,  say K,, satisfying 

a&,$) = 0, 

if ‘ > ”) (5.28) 
if d < 0. 

The right-hand sides of these equations are functions of K only whereas the left- 
hand side depends only on a and m. Also a > 7~ and $(a, m) takes on values be- 
tween $(n, m) and zero, where $(n, m) is bounded above by unity; see figure 2 (a). 
Since 0 < K < 1, we can readily ascertain those values of K ,  if any, for which the 
functions IIc and IId take values in the interval [O,$(n,m)]; see figure 2 ( b ) .  
Given a and m, accurate values for K,, once located, can be obtained by Newton’s 
method. With K, thus determined, corresponding values for A, and a, say Are 
and a,, follow from ( 5 . 2 7 ~ )  and (5.25) respectively. 

Table 1 lists values of K, and a, for selected values of a in the case m = 1. Note 
that, since &(K)  > 4 (figure 2 b ) ,  the € < 0, or dn, limit cycle is possible only 
when the steady wave solution (corresponding to a = 1, K = 0, h, = 1 - &qr, 
Nl = N and E = - $ N )  is stable, since then $(a,m) > *; see $4. However, the 
8 > 0, or cn, limit cycle is possible for all values of a. These results are remarkably 
similar to those of P72; in the case € < 0, the range of variation of K, as a function 
of a is the whole interval (0, 1), whereas for € > 0, the possible values of K lie 
between 0.96373 and 0.99445 compared with 0.92877 and 0.99589 in P72. Never- 
theless, it  is worth re-emphasizing that the physical interpretation of the present 
solutions differs considerably from those of P72, unless a/Zrnr % 1 (see § 3). 

Of course, whether or not a limit cycle is realizable depends on its stability, 
which is now considered. 

fl,.(K) = 2 - &&l(K)/K2((Cn4} - {Cn2}2) 
&(K)  = 2 - &al(~)/({dn4} - (dn2)2) 

or $(a ,m)  = ( 

5.4. Stability of the limit cycles 
The stability characteristics of the limit cycles are revealed by a linear stability 
analysis of (5.27) near the point (a,, K,, A,,, A,, ...) : the details are straight- 
forward and are sketched only briefly. With 

(a, K,  An) = (a,, Ke, An,) + K O ,  Ano) ~ X P  (AT), 
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the values of h for which the linearized versions of (5.27) have a solution satisfy 
the transcendental equation 

h(a, a& - a2 a4) - a,; a4 
h(a, b,/a - a2 b,) - aj 6, 

32m2 +-c n2N n= 1 

c,, qn (2 - qn) - 
- 0, ) h + qn 

where a; = aa, /a~,  b, = ab/aol, b, = iib/aK and the suffix e means that a particular 
quantity is evaluated a t  the equilibrium point. Using the formula (A 8) obtained 
for the above series in appendix A, the equation is conveniently expressed as one 
in p, where h = p2/( 1 -p2) ,  i.e. 

2m27r2( 2 - p2) [ 4ap tanh i ap]  
1 -  - N  = 0. 

,u2(a, b,/a - a2 b, + a,; b,) - a; b, 
p2(a,a,/a - a2a4 + a;a4) - aja4 

+ 4m2n2 + a2p2 4m2n2 + a2 
(5.29) 

A limit cycle is stable unless there is at  least one root of (5.29) giving Re h > 0,  
in which case it is unstable. The analysis follows exactly the same procedure as 
that used to investigate the stability of the equilibrium solution: see $3 .  The 
results are as follows: in the case of the E < 0 limit cycle, (5.29) has a real root p in 
the interval (0,f j for each value of a and this limit cycle is always unstable; how- 
ever, it  appears that the € > 0 limit cycle is always stable, and this is confirmed 
for values of a between m and 1Om in our calculations. Again, these results are 
exactly analogous to the ones given in P 7 2  although the analytic details and 
physical interpretation are somewhat different, unless a,/2m7r 9 1. 

5.5. Evolution to a limit cycle 

Equations (5.27) constitute an autonomous system in an infinite-dimensional 
phase space and the usual theorems available for behaviour in finite- (mostly 
two-) dimensional phase space are inapplicable. Nevertheless, the results for 
two-dimensional systems do provide some guidance in understanding the types 
of behaviour possible in the present problem. As the linear stability analyses of 
the steady solution and of the limit cycles give an indication of local features 
of the solutions only, we have integrat’ed the system of equations (5.27) numeri- 
cally (truncating the rapidly convergent series in (5.27 b )  after the fifteenth term) 
in an attempt to gain insight into their global behaviour. The results are much 
as would be expected had the system been two-dimensional. If the steady solution 
i s  stable, it has a certain range of attraction, the ‘boundary) of which may, in 
a loose sense, be thought of as the unstable dn limit cycle. Outside this range of 
attraction, the system evolves to the stable en limit cycle. If the steady solution 
is  unstable, evolution to the stable cn limit cycle occurs. 

Using asymptotic formulae for the behaviour of K ( K )  and E ( K )  as K +  1 (see 
EF, p. 299, $$900.06 and 900.10) it can be shown that the coefficients a,, a2 and a3 
in (5.27 a )  all tend to zero as K +- 1. It follows that the hypersurface corresponding 
to K = 1 (hence d = 0) is a sort of ‘hyperseperatrix’ through which evolution 
from a dn solution (8 < 0 )  to a en solution (€ > 0 )  must occur. Moreover, it 
appears from the numerical integrations that evolution of solutions in which the 
initial values of A, are compatible with those of CL and K through the formula 
An(0) = - + q , ~ ( 0 ) ~ ,  as in the case of, for example, an initially infinitesimal 
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disturbance, or A, = ( 1 - &qn) b(a,, K,), in the case of a limit cycle, can only take 
place in the direction from & < 0 to & > 0 solutions. In  other words, solutions 
with & initially positive appear always to evolve to the d > 0 limit cycle with 
d remaining positive at all times. 

6. Conclusion 
The analysis described here shows that, in the case of asymptotically small 

(but non-zero) dissipative effects, the amplitude evolution equations for mar- 
ginally unstable baroclinic waves in a two-layer, quasi-geostrophic flow model 
admit stable limit-cycle solutions, It resolves the uncertainty in P72 resulting 
from the omission of side-wall boundary conditions on the zonal mean motion 
but confirms the essential predictions of that paper, despite the fact that the 
energy conversions and mean flow structure in the present theory are, in general, 
substantially different to those of P72. The theory therefore offers a possible 
explanation for the phenomenon of amplitude vacillation in this viscous regime. 

When dissipative effects are small on the time scale for the growth of an 
incipient wave, but not asymptotically small, approximate numerical integra- 
tions of the amplitude equations also yield periodic solutions under certain con- 
ditions. Solutions for this parameter regime will be discussed in a further 
paper. 

I am grateful to Prof. J. Pedlosky and Dr J. Hart for helpful correspondence 
concerning this problem and to Prof. Steve Davis of The Johns Hopkins Uni- 
versity for his advice concerning the presentation of certain results. 

Appendix A. Evaluation of the series 
xcrnnG(~ = 0,1,2), Scmnqn('-qn)l(h+qn) 

The function sin 2mnx has the following half-range Fourier cosine series 
expansion over the interval [0,  I]: 

8m cos(2n-1)nx 
n n=l 4m2- (2n- i ) 2 '  

sin2mnx = - C 

The Parseval formula associated with this series is 

m m 1 -2 I I I  
=- z %n?i = x 

n = l  n=l  [4m2 - (2n - 1)2]2 64m2' 

Since lsin 2m7rxI = sin 2mnx when x = - I, 0 and 1, the series (A 1) is uniformly 
convergent in the interval [0, I], whence 

= 0. 
1 00 

n=14m2-(2n-l)2 c - 

The even function [sinhaxl, - I < x < 1, has the Fourier cosine expansion 

O0 cos2nn-x cos (2n - 1) nx sinhax = (cosha- 1) ] -2a(I+cosha) x 
n=1a2+(2n-l)2n2' 
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which converges uniformly in the interval [ - 1,1]. Setting x = 0 and x = 1 and 
subtracting the two results leads to the formula 

I 1 

and differentiation of each side of this equation with respect to a leads to the 
formula 

[2 tanh &a - a sech2 +a]. 
1 m 

n=l  
c P i = x 2  

Expressions for N = Sc,,q, and A?, = Xc,,q; may then be obtaia.ed by ex- 

formulae are 
pressing cmnqn and c,,q; as linear combinations of c,,, B em,, p ,  and p i .  The 

(A 6) 
4a tanh &a 

N =  

and 

(A 7) 
Finally, 

where h = p2/( l  -p2).  Thus, using (A 6 )  with a replaced by up, it readily follows 
that 

4ap tanhiup] - N .  (As)  
[I- 

32m2 5 cmnqn(2 - qn) - 2m2n2(2 - p2) - - 
n2 n=l  A+pn 4m2n2 + a2p2 4m2n2 + a p 

Note that this series is uniformly convergent for Rep  > 0. 

Appendix B. Stability details for $4 
With d = f 1 +a and X, = 1 +x,, the linearized version of (2 .5 )  gives 

and 

d2a da 64m2 * 
-+$0--+- r c  x = o  
dT2 d7 - n2 riel mn 

x + O - q n x n =  dxn * q n  

It follows readily that a non-trivial solution of these equations exists, with a 
and xn proportional to exp (AT), if h satisfies the equation 

When 0- = 0, this equation becomes A2 + 2N = 0,  implying imaginary values for 
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A, and the points d = 5 1, X n  = 1 correspond to a ‘centre’, consistent with 
solutions of the inviscid equation (5.1). I f  0 < u < 1, it  is easy to show that to 
order u the roots are h = ( - 2 N ) * +  &{l - 295(a, m)}, where $(a, m )  = 2N2/N.  
Hence the steady solutions 

As indicated in $4, a similar stability analysis of the steady solutions can be 
done starting instead with (2.5) and (2.6). The linearized versions of these 
equations yield respectively 

= i 1, X n  E 1 are unstable if #(a, m )  < 4. 

(A2 + @A) a, T 4m2n2 y )  COB 2mnydy = 0 (B 4) 

and I v ,=+2  rAy) - a, cos 2mny, 
d2v, ha2 
dy2 h+(T 

subject to V,(O) = 0, vo(l) = 0. ,I 

Solving (B 5) for v,(y) and substituting this in (B 4 )  yields, after a, little algebra, 

where q2 = h/(h + a). Written in terms of 7, (B 6 )  is simply the discriminant 
equation (4.1). 

Appendix C. Derivation of (5.23) 
With the substitution A,(& 0) = g ( t ,  0) aA,/at, (5.11) becomes 

This may be written in the form 

and the term in square brackets on the left-hand side of this equation vanishes 
on account of (5.9). Multiplication of (C 2 )  by aA,/at yields 
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using (4.10) and the definition of g given above. This expression may be rewritten 
in the form 

~, ,A;(-L,-q,A,41 
1 m  

f n=l 

by using (5.12), (5.13) and (5.22). Finally, (5.23) follows from the average of (C 3) 
over the period Bp if we take the form of G(t, 8) given in (C 4) and note that A ,  
and A,  being periodic in t with period 0, implies that ag/at is periodic with the 
same period. 
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